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Who am 1?

@ Portugal > Netherlands

% Master’s Student @ TU Delft

@ Al & Data Analysis

.ﬁ Thesis @ DevOn

s2& Guided by Experts
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What am | talking about?

Al-Powered Delay Prediction for PPM

Struggles of Predicting Delays

Al tor Portfolio Management



Replicable?
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Replication environment

o Different industry
O Faster moving
O Less regulated
O More demand-driven

o Similar investments
O Agility
O Data-driven decision-making

Coca-Cola
HBC



effective is Dr. Kula's solution
en applied to CCH’s Project Portfolio?
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Data Cleaning and Preprocessing

O 71463 epics

®» 4040 clean epics

® 54% usability rate

Coca-Cola
HBC

® 2164 epics
- non-delivered
- no target dates
- <10 planned sprints
- <10 actual sprints

® 354 clean epics
® 16% usability rate
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Collecting Delay Factors

Risk factor Predictor variable Description
Task dependencies 1. out-degree Number of outgoing dependencies of an epic on other epics
Organizational stability 2. changed-leads Number of changed tribe leads during the current and previous epic
Team stability 3. stability-ratio Median of the ratio of team members that did not change during the current and
previous epic
Skills and knowledge 4. dev-age-ing Median of the number of years the developers working on the epic have been
working at ING
Team familiarity 5. team-existence Median of the number of years teams have existed in their current composition
of team members
Team commitment 6. hist-performance Median of the ratio of on-time delivered epics over all teams working on the epic
Work in progress 7. dev-workload Median of the number of story points assigned to a developer per sprint
Bugs or incidents 8. nr-incidents Number of incidents that occurred during the development phase of the epic
9. unplanned-stories Number of unplanned stories (related to bug fixes or incidents) that have been
added to the epic
Project size 10. nr-stories Number of planned stories assigned to the epic
11. nr-sprints Number of sprints assigned to the epic
12. team-size Median team size in the epic
Project security 13. security-level The ratio of user stories in the epic that need to pass a security testing process

O
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Final Datasets

® 4040 epics
& 13 predictor variables

® 354 epics
o 7 predictor variables
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Delay Patterns

& Show when delays happen
throughout an epic

& Large distance between 25
and 75t percentiles

O Small dataset
O Unclear or non-existing patterns

o Delay patterns are not
indicative of overall delay
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Figure 4: Four clusters of delay profiles representing recur-
rent delay patterns across milestones in epic deliveries at
ING: 25th percentile: dotted; centroid: solid; and 75th per-
centile: dashed.
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Performance Measurements

o Epic delivered Balanced Relative Error (BRE)

Gontime: BRE=0 Act — Pln
- > _
O50% longer: BRE=0.5 If Act-Pln > 0, then BRE

Planned Duration
Act — Pln

Actual Duration

If Act- Pln <0, then BRE =

o Average distance between Mean Absolute Error (MAE)
predicted and actual delay

N
1
MAE = — ' | Actual BRE; — Estimated BRE; |
N <

® The lower the MAE, the i=1
higher the accuracy
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Predictive Results

O MAE=0.5

O Off by half the epic’s length |
o MAE at ING: 0.19 to 0.04
:
o MAE goes down as amountot
training data increases

O More data, better results!

MAE as training data increases
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How effective is Dr. Kula's solution when applied to
Coca-Cola Hellenic's Project Portfolio?

Distribution of epic delays (BRE)

& Mean Absolute Erroris 0.5 100 -

o Effective outlier detector _
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& Performs better with more dat
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® Overall, not effective.




Data quality is everything.
Data takes time, start today!

Does CCH really need this?

Great solutions are tailored to organizational
needs, not wants.

Bottom-up change > Top-down enforcement
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Thank you

Gaspar Rocha
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