Al-Powered Delay Prediction for Portfolio Management

Gaspar Rocha

Who am I?

 $\mathsf{Portugal} \to \mathsf{Netherlands}$

Master's Student @ TU Delft

AI & Data Analysis

Thesis @ DevOn

Guided by Experts

What am I talking about?

Al-Powered Delay Prediction for PPM

Struggles of Predicting Delays AI for Portfolio Management

Existing Literature – The work of Dr. Kula

Replication environment

- Different industry
 - Faster moving
 Less regulated
 More demand-driven

♂ Similar investments
♂ Agility
♂ Data-driven decision-making

How effective is Dr. Kula's solution when applied to CCH's Project Portfolio?

Data Cleaning and Preprocessing

07463 epics

ॳ 4040 clean epics

⁰ 54% usability rate

HBC

- **○**2164 epics
 - non-delivered
 - no target dates
 - < 10 planned sprints
 - < 10 actual sprints

७ 354 clean epics७ 16% usability rate

Collecting Delay Factors

Risk factor	Predictor variable	Description
Task dependencies	1. out-degree	Number of outgoing dependencies of an epic on other epics
Organizational stability	2. changed-leads	Number of changed tribe leads during the current and previous epic
Team stability	3. stability-ratio	Median of the ratio of team members that did not change during the current and previous epic
Skills and knowledge	4. dev-age-ing	Median of the number of years the developers working on the epic have been working at ING
Team familiarity	5. team-existence	Median of the number of years teams have existed in their current composition of team members
Team commitment	6. hist-performance	Median of the ratio of on-time delivered epics over all teams working on the epic
Work in progress	7. dev-workload	Median of the number of story points assigned to a developer per sprint
Bugs or incidents	8. nr-incidents	Number of incidents that occurred during the development phase of the epic
	9. unplanned-stories	Number of unplanned stories (related to bug fixes or incidents) that have been added to the epic
Project size	10. nr-stories	Number of planned stories assigned to the epic
	11. nr-sprints	Number of sprints assigned to the epic
	12. team-size	Median team size in the epic
Project security	13. security-level	The ratio of user stories in the epic that need to pass a security testing process

Final Datasets

७ 4040 epics७ 13 predictor variables

७ 354 epics७ 7 predictor variables

dev@n

Delay Patterns

- Show when delays happen throughout an epic
- ▲ Large distance between 25th and 75th percentiles
 ▲ Small dataset
 ▲ Unclear or non-existing patterns
- Delay patterns are not indicative of overall delay

Figure 4: Four clusters of delay profiles representing recurrent delay patterns across milestones in epic deliveries at ING: 25th percentile: dotted; centroid: solid; and 75th percentile: dashed.

Performance Measurements

➡ Epic delivered
➡ on time: BRE = 0
➡ 50% longer: BRE = 0.5

Balanced Relative Error (BRE)If Act - Pln ≥ 0 , then BRE $= \frac{Act - Pln}{Planned Duration}$ If Act - Pln < 0, then BRE $= \frac{Act - Pln}{Act - Pln}$

• Average distance between predicted and actual delay • The lower the MAE, the higher the accuracy • Average distance between Mean Absolute Error (MAE) $MAE = \frac{1}{N} \sum_{i=1}^{N} | Actual BRE_i - Estimated BRE_i |$

Predictive Results

MAE ≈ 0.5
Off by half the epic's length

O MAE at ING: 0.19 to 0.04

 MAE goes down as amount of training data increases
 More data, better results!

How effective is Dr. Kula's solution when applied to Coca-Cola Hellenic's Project Portfolio?

Data quality is everything. Data takes time, start today!

Does CCH really need this? Great solutions are tailored to organizational needs, not wants. Bottom-up change > Top-down enforcement

Thank you

Gaspar Rocha